Особенности применения кварцевых генераторов с высокой температурной стабильностью


PDF версия

Температурная стабильность частоты – один из ключевых параметров кварцевых генераторов. Современные термостатированные кварцевые генераторы обеспечивают очень высокую температурную стабильность частоты вплоть до ±1E–11 в широком интервале температур –40…85°C. Столь малые величины изменения частоты требуют некоторых особенностей при измерении и, соответственно, при эксплуатации таких генераторов. В статье рассматриваются особенности эксплуатации подобных генераторов, методики измерения температурной стабильности, а также влияние на нее других факторов.

Одним из основных параметров кварцевых генераторов является температурная стабильность. Существует несколько разных методов ее обеспечения.

  1. Простые кварцевые генераторы (КГ), где температурная стабильность обеспечивается только самим кварцевым резонатором за счет выбора угла среза кварцевого элемента. Температурная стабильность таких генераторов составляет ±10…15E–6 в диапазоне –40…85°C (см. рис. 1).
  2. Термокомпенсированные кварцевые генераторы (ТККГ). В них имеются дополнительные элементы, которые формируют управляющее напряжение, компенсирующее зависимость выходной частоты от температуры. Температурная стабильность таких генераторов составляет ±1…3E–7 в диапазоне –40…85°C (см. рис. 1).
  3. Термостатированные кварцевые генераторы (ТСКГ). В них кварцевый резонатор и основная часть элементов находятся в термостате, поддерживающем постоянную температуру. Температурная стабильность таких генераторов достигает ±1…5E–11 в диапазоне –40…85°C (см. рис. 1).
Зависимость частоты кварцевых генераторов разных видов от температуры
Рис. 1. Зависимость частоты кварцевых генераторов разных видов от температуры

Далее мы рассмотрим именно термостатированные генераторы, причем только самые высокостабильные.

Сначала детальнее остановимся на базовой конструкции термостатированных генераторов. Как уже упоминалось, в подобных генераторах все чувствительные к изменению температуры элементы находятся внутри термостата, в котором поддерживается постоянная температура (см. рис. 2).

Схема конструкции термостатированного кварцевого генератора
Рис. 2. Схема конструкции термостатированного генератора

Температура внутри термостата устанавливается несколько выше (обычно на 5–15°C) верхней рабочей температуры эксплуатации генератора. Кроме того, она выбирается таким образом, чтобы температурная зависимость резонатора находилась в районе одного из его экстремумов (см. точки LTP и UTP на рисунке 3). Таким образом, обеспечивается минимальное изменение частоты кварцевого генератора в зависимости от температуры окружающей среды.

Типовая зависимость частоты кварцевого резонатора от температуры
Рис. 3. Типовая зависимость частоты кварцевого резонатора от температуры

Необходимость поддержания высокой температуры термостатом приводит к следующим отличительным чертам термостатированных кварцевых генераторов:

  1.  Повышенный ток потребления при включении.
    Как только температура внутри термостата достигает заданного уровня, ток потребления существенно уменьшается;
  2.  Необходимость первоначального прогрева.
    Характеризуется точностью установления частоты в заданных пределах за фиксированное время, которое обычно составляет 2–5 мин при температуре 25°C и точности до ±2E–8.

Подобная базовая модель обеспечивает температурную стабильность в диапазоне ±1E–8…±5E–10 в зависимости от конструкции. Существует несколько следующих способов повышения температурной стабильности описанной конструкции:

  1. Использование двойного термостата. В подобных генераторах применяется дополнительный термостат, внутрь которого помещается базовый термостат. Это достаточно эффективный способ, благодаря которому, как правило, достигается стабильность ±1E–10. Однако его применение сопряжено с неизбежными издержками, к которым относятся сравнительно большие габариты и ограничение верхней рабочей температуры эксплуатации генератора из-за необходимости установить большую разницу между рабочей температурой и температурой термостата.
  2. Использование дополнительной температурной компенсации. Итоговая зависимость частоты от температуры базовой конструкции обычно носит более–менее линейный характер, что позволяет относительно просто ее компенсировать. К недостаткам этого метода относится довольно высокая крутизна итоговой зависимости частоты от температуры, что может нивелировать все преимущества. Использование этого метода применительно к термостатированным генераторам обычно позволяет увеличить температурную стабильность до пяти раз.
  3. Наиболее сложный, но дающий наилучшие результаты метод «вылизывания» базовой конструкции. Он заключается в тщательном расчете и продолжительном многоитеративном процессе доработки конструкции конкретного типа генераторов для получения лучшей температурной стабильности, в т. ч. за счет понижения температурных градиентов. Благодаря этому подходу температурная стабильность достигает значений, которыми характеризуются генераторы с двойным термостатированием; при этом сохраняются габариты и, в особенности, высота базовой конструкции.

Для получения эксклюзивно высокой температурной стабильности, достигающей, например, ±1E–11, приходится в полной мере реализовать все описанные выше меры улучшения температурной стабильности.

Как при эксплуатации, так и при измерении параметров генераторов с высокой температурной стабильностью могут возникать дополнительные факторы, влияющие на температурную стабильность. Так, например, выходная частота кварцевых генераторов изменяется с течением времени. При этом крайне важно, сколько времени генератор находился во включенном состоянии. Так, у генераторов, работающих в течение нескольких недель, суточное изменение частоты составляет несколько единиц E–11, а у генераторов, включенных всего один день, эта величина равна нескольким единицам E–10. Нетрудно заметить, что такой вклад заметен при измерении температурной стабильности, тем более когда она мала и сопоставима с таким уходом. Таким образом, при оценке стоит учитывать дрейф частоты генератора. Сделать это довольно просто – необходимо выдержать генератор при некоторой постоянной температуре и фиксировать его частоту. Далее по полученным результатам строится модель ухода частоты с течением времени – для непродолжительных промежутков времени вполне хватит простой линейной модели.

Обычно при испытаниях генераторов с очень высокой температурной стабильностью нам приходится использовать несколько циклов нагрева/охлаждения, чтобы убедиться, что генератор удовлетворяет нормам по температурной стабильности. Влияние дрейфа частоты отчетливо видно по результатам испытаний генератора ГК360-ТС производства АО «Морион».

На рисунке 4 красным цветом показана исходная характеристика, снятая в процессе измерений. Видно, что она обладает линейным наклоном, что связано со старением генератора. Синим цветом показана эта же характеристика, но с вычтенным дрейфом.

Результат измерения температурной стабильности генератора ГК360-ТС производства АО «Морион» и его обработка
Рис. 4. Результат измерения температурной стабильности генератора ГК360-ТС производства АО «Морион» и его обработка

Как уже отмечалось, если для повышения температурной стабильности используется дополнительная компенсация, на итоговой характеристике могут присутствовать отдельные участки с заметной крутизной. Подобная ситуация не явно выражена в случае термостатированных кварцевых генераторов, но очень заметна при использовании рубидиевых генераторов.

На рисунке 5 показаны две разные зависимости частоты от температуры. В первом случае при малом изменении температуры изменение частоты также пропорционально мало. Во втором случае при малом изменении температуры частота меняется в существенно большей мере вплоть до значения температурной стабильности во всем интервале.

Сравнение зависимости от температуры частоты генераторов с: линейной ТЧХ и сильно меняющейся ТЧХ
Рис. 5. Сравнение зависимости от температуры частоты генераторов с:
а) линейной ТЧХ;
б) сильно меняющейся ТЧХ

Кроме того, из-за компенсации или неудачной конструкции изменения частоты многократно превышают норму при быстром изменении температуры (см. рис. 6).

Пример малой реакции на температурный удар для ГК360-ТС
Рис. 6. Пример малой реакции на температурный удар для ГК360-ТС

У термостатированных генераторов с высокой температурной стабильностью форма и величина зависимости частоты от температуры при изменении их ориентации меняются с высокой вероятностью. Это происходит из-за конвекции внутри объема генератора. У правильно разработанного генератора такая зависимость должна быть сведена к минимуму и учтена при испытаниях.

Говоря о термостатированных генераторах сверхвысокой стабильности, отдельно следует упомянуть проблемы, возникающие при подстройке частоты генератора с помощью управляющего напряжения. Наличие этой функции напрямую влияет на стабильность генератора. Когда мы говорим о столь малых величинах нестабильности, вклад перестройки становится особо остро заметен. Так, генератор без такой опции обладает большей температурной и кратковременной стабильностью, чем с этой опцией. Например, температурную стабильность генератора без перестройки можно довести до ±1E–11, тогда как с перестройкой эта величина уже составляет ±2E–11. Соответственно, при необходимости обеспечить лучшую температурную стабильность предпочтение отдается системам, в которых допустимо применение генератора без возможности перестройки частоты.

Перестройка обеспечивается либо аналоговой цепью, либо цифровой. Генераторы с цифровым управлением включают в себя ЦАП, и управление частотой осуществляется подачей кода. Управление ЦАП реализуется по протоколам I2C или SPI. При цифровом варианте управления деградация температурной стабильности минимальна, однако при изменении кода управления могут кратковременно ухудшаться нестабильность, и возрастать фазовые шумы.

Еще одним ограничением является минимальный фиксированный шаг перестройки, который зависит от разрядности ЦАП. Для 20‑бит ЦАП он составляет 5E–13…10E–13.

В генераторах с аналоговым управлением для приведения частоты к номиналу на соответствующий вход подается управляющее напряжение (см. рис. 7).

 Схема включения генератора с аналоговым управлением и общей землей
Рис. 7. Схема включения генератора с аналоговым управлением и общей землей

На земляном выводе генератора возникает падение напряжения, зависящее от протекающего тока нагревательных транзисторов термостата. При таком подключении оно попадает в цепь управления, ухудшает температурную и кратковременную стабильность частоты.

Для уменьшения этого влияния следует уменьшить сопротивление (длину) общей цепи протекающих токов питания генератора и цепи управления. Кардинальным способом является использование разных земель (см. рис. 8). Однако такой способ снижает унификацию генераторов и накладывает достаточно серьезные ограничения на схемотехнику оборудования.

Схема включения генератора с аналоговым управлением с раздельными землями
Рис. 8. Схема включения генератора с аналоговым управлением с раздельными землями

Еще одним фактором, который следует учесть при эксплуатации сверхвысокостабильных генераторов, являются применяемые материалы, т. к. при соединении разнородных проводников, спаи которых находятся при разных температурах, в цепи управления возникает термоЭДС, влияющая на температурную стабильность частоты. Чем выше температурная стабильность, тем в большей мере проявляются все описанные эффекты.

Генераторы с высокой температурной стабильностью успешно применяются во многих областях, где требуется очень стабильная частота. Они даже могут посоревноваться с рубидиевыми генераторами в некоторых областях применения благодаря меньшим габаритам и потреблению. Их зависимость частоты от изменения температуры гораздо более линейна и обладает меньшей крутизной. Таким образом, при небольших изменениях температуры окружающей среды линейность существенно лучше, чем у рубидиевых генераторов.

Заметим, что, в отличие от рубидиевых, старение термостатированных кварцевых генераторов происходит быстрее, но в случае крайне малого изменения частоты при изменении температуры влияние этого эффекта можно компенсировать.

Итак, мы рассмотрели особенности конструкции термостатированных генераторов, методы улучшения температурной стабильности и некоторые особенности использования подобных генераторов.

Литература

  1. John  Vig. Quartz Crystal Resonators and Oscillators. Tutorial. US Army Communications-Electronics Research, Development & Engineering Center Fort Monmouth. NJ. USA. March 2004.
  2.  Kotyukov, Y. Ivanov, A. Nikonov. Precise Frequency Sources Meeting the 5G Holdover Time Interval Error Requirement. Microwave Journal. May. 2018.
Оставьте отзыв

Ваш емейл адрес не будет опубликован. Обязательные поля отмечены *